Ariadne.jl

Newton Method using Krylov.jl (montoison-orban-2023)[@cite]

API

Ariadne.newton_krylov!Function

Arguments

  • F!: F!(res, u, p) solves res = F(u) = 0
  • u₀: Initial guess
  • p: Parameters
  • M: Length of the output of F!. Defaults to length(u₀)

Keyword Arguments

  • tol_rel: Relative tolerance
  • tol_abs: Absolute tolerance
  • max_niter: Maximum number of iterations
  • forcing: Maximum forcing term for inexact Newton. If nothing an exact Newton method is used.
  • verbose:
  • Workspace:
  • M:
  • N:
  • krylov_kwarg
  • callback:
source

Arguments

  • F!: F!(res, u, p) solves res = F(u) = 0
  • u: Initial guess
  • p:
  • res: Temporary for residual

Keyword Arguments

  • tol_rel: Relative tolerance
  • tol_abs: Absolute tolerance
  • max_niter: Maximum number of iterations
  • forcing: Maximum forcing term for inexact Newton. If nothing an exact Newton method is used.
  • verbose:
  • Workspace:
  • M:
  • N:
  • krylov_kwarg
  • callback:
source
Ariadne.newton_krylovFunction
newton_krylov(F, u₀::AbstractArray, M::Int = length(u₀); kwargs...)

Arguments

  • F: res = F(u₀, p) solves res = F(u₀) = 0
  • u₀: Initial guess
  • p: Parameters
  • M: Length of the output of F. Defaults to length(u₀).

Keyword Arguments

  • tol_rel: Relative tolerance
  • tol_abs: Absolute tolerance
  • max_niter: Maximum number of iterations
  • forcing: Maximum forcing term for inexact Newton. If nothing an exact Newton method is used.
  • verbose:
  • Workspace:
  • M:
  • N:
  • krylov_kwarg
  • callback:
source

Parameters

Ariadne.ForcingType
Forcing

Implements forcing for inexact Newton-Krylov. The equation $‖F′(u)d + F(u)‖ <= η * ‖F(u)‖$ gives the inexact Newton termination criterion.

Implemented variants

source

Internal

Bibliography