Tutorial: Solution of the heat equation with Dirichlet boundary conditions

We continue the previous tutorial on solving the heat equation with Neumann boundary conditions by looking at Dirichlet boundary conditions instead, resulting in a non-conservative production-destruction system.

Definition of the (non-conservative) production-destruction system

Consider the heat equation

\[\partial_t u(t,x) = \mu \partial_x^2 u(t,x),\quad u(0,x)=u_0(x),\]

with $μ ≥ 0$, $t≥ 0$, $x\in[0,1]$, and homogeneous Dirichlet boundary conditions. We use again a finite volume discretization, i.e., we split the domain $[0, 1]$ into $N$ uniform cells of width $\Delta x = 1 / N$. As degrees of freedom, we use the mean values of $u(t)$ in each cell approximated by the point value $u_i(t)$ in the center of cell $i$. Finally, we use the classical central finite difference discretization of the Laplacian with homogeneous Dirichlet boundary conditions, resulting in the ODE

\[\partial_t u(t) = L u(t), \quad L = \frac{\mu}{\Delta x^2} \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ && 1 & -2 & 1 \\ &&& 1 & -2 \end{pmatrix}.\]

The system can be written as a non-conservative PDS with production terms

\[\begin{aligned} &p_{i,i-1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i-1}(t),\quad i=2,\dots,N, \\ &p_{i,i+1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i+1}(t),\quad i=1,\dots,N-1, \end{aligned}\]

and destruction terms $d_{i,j} = p_{j,i}$ for $i \ne j$ as well as the non-conservative destruction terms

\[\begin{aligned} d_{1,1}(t,\mathbf u(t)) &= \frac{\mu}{\Delta x^2} u_{1}(t), \\ d_{N,N}(t,\mathbf u(t)) &= \frac{\mu}{\Delta x^2} u_{N}(t). \end{aligned}\]

In addition, all production and destruction terms not listed are zero.

Solution of the non-conservative production-destruction system

Now we are ready to define a PDSProblem and to solve this problem with a method of PositiveIntegrators.jl or OrdinaryDiffEq.jl. In the following we use $N = 100$ nodes and the time domain $t \in [0,1]$. Moreover, we choose the initial condition

\[u_0(x) = \sin(\pi x)^2.\]

x_boundaries = range(0, 1, length = 101)
x = x_boundaries[1:end-1] .+ step(x_boundaries) / 2
u0 = @. sinpi(x)^2 # initial solution
tspan = (0.0, 1.0) # time domain

We will choose three different matrix types for the production terms and the resulting linear systems:

  1. standard dense matrices (default)
  2. sparse matrices (from SparseArrays.jl)
  3. tridiagonal matrices (from LinearAlgebra.jl)

Standard dense matrices

using PositiveIntegrators # load ConservativePDSProblem

function heat_eq_P!(P, u, μ, t)
    fill!(P, 0)
    N = length(u)
    Δx = 1 / N
    μ_Δx2 = μ / Δx^2

    let i = 1
        # Dirichlet boundary condition
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    for i in 2:(length(u) - 1)
        # interior stencil
        P[i, i - 1] = u[i - 1] * μ_Δx2
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    let i = length(u)
        # Dirichlet boundary condition
        P[i, i - 1] = u[i - 1] * μ_Δx2
    end

    return nothing
end

function heat_eq_D!(D, u, μ, t)
    fill!(D, 0)
    N = length(u)
    Δx = 1 / N
    μ_Δx2 = μ / Δx^2

    # Dirichlet boundary condition
    D[begin] = u[begin] * μ_Δx2
    D[end] = u[end] * μ_Δx2

    return nothing
end

μ = 1.0e-2
prob = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ) # create the PDS

sol = solve(prob, MPRK22(1.0); save_everystep = false)
using Plots

plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol.u); label = "u")
Example block output

Sparse matrices

To use different matrix types for the production terms and linear systems, you can use the keyword argument p_prototype of ConservativePDSProblem and PDSProblem.

using SparseArrays
p_prototype = spdiagm(-1 => ones(eltype(u0), length(u0) - 1),
                      +1 => ones(eltype(u0), length(u0) - 1))
prob_sparse = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ;
                         p_prototype = p_prototype)

sol_sparse = solve(prob_sparse, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_sparse.u); label = "u")
Example block output

Tridiagonal matrices

The sparse matrices used in this case have a very special structure since they are in fact tridiagonal matrices. Thus, we can also use the special matrix type Tridiagonal from the standard library LinearAlgebra.

using LinearAlgebra
p_prototype = Tridiagonal(ones(eltype(u0), length(u0) - 1),
                          ones(eltype(u0), length(u0)),
                          ones(eltype(u0), length(u0) - 1))
prob_tridiagonal = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ;
                              p_prototype = p_prototype)

sol_tridiagonal = solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_tridiagonal.u); label = "u")
Example block output

Performance comparison

Finally, we use BenchmarkTools.jl to compare the performance of the different implementations.

using BenchmarkTools
@benchmark solve(prob, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 506 samples with 1 evaluation per sample.
 Range (minmax):  8.840 ms17.759 ms   GC (min … max): 0.00% … 33.32%
 Time  (median):     9.093 ms               GC (median):    0.00%
 Time  (mean ± σ):   9.851 ms ±  1.427 ms   GC (mean ± σ):  4.89% ±  7.93%

   ▇█                ▂▂▂▁                   ▂                
  ███▇▄▆▁▁▁▁▁▄▆▆▇▇▇█████▇▆▆▆▁▄▁▁▁▁▄▁▁▁▁▁▁▁▇█▇▄▆▄▁▁▁▁▁▁▄▁▁▄ ▇
  8.84 ms      Histogram: log(frequency) by time     14.5 ms <

 Memory estimate: 10.21 MiB, allocs estimate: 709.
@benchmark solve(prob_sparse, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 771 samples with 1 evaluation per sample.
 Range (minmax):  5.886 ms 15.889 ms   GC (min … max): 0.00% … 19.00%
 Time  (median):     6.065 ms                GC (median):    0.00%
 Time  (mean ± σ):   6.479 ms ± 946.811 μs   GC (mean ± σ):  4.54% ±  6.63%

    ▇█                                                        
  ▃▅██▇▅▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▄▅▄▄▃▃▂▂▂▁▃▁▁▁▂▂▂▂▁▂▁▂▂▂ ▃
  5.89 ms         Histogram: frequency by time        8.49 ms <

 Memory estimate: 9.71 MiB, allocs estimate: 4598.

By default, we use an LU factorization for the linear systems. At the time of writing, Julia uses SparseArrays.jl defaulting to UMFPACK from SuiteSparse in this case. However, the linear systems do not necessarily have the structure for which UMFPACK is optimized for. Thus, it is often possible to gain performance by switching to KLU instead.

using LinearSolve
@benchmark solve(prob_sparse, MPRK22(1.0; linsolve = KLUFactorization()); save_everystep = false)
BenchmarkTools.Trial: 3810 samples with 1 evaluation per sample.
 Range (minmax):  1.229 ms 28.864 ms   GC (min … max): 0.00% … 65.23%
 Time  (median):     1.299 ms                GC (median):    0.00%
 Time  (mean ± σ):   1.310 ms ± 447.782 μs   GC (mean ± σ):  0.38% ±  1.06%

                   ▁▃▆██▇                                    
  ▁▁▁▁▁▁▁▂▃▃▄▅▆▅▅▆▇██████▇▆▅▄▃▂▂▂▂▂▂▂▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▃
  1.23 ms         Histogram: frequency by time        1.42 ms <

 Memory estimate: 105.25 KiB, allocs estimate: 166.
@benchmark solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 8201 samples with 1 evaluation per sample.
 Range (minmax):  469.526 μs60.043 ms   GC (min … max): 0.00% … 98.79%
 Time  (median):     497.048 μs               GC (median):    0.00%
 Time  (mean ± σ):   607.201 μs ±  1.113 ms   GC (mean ± σ):  8.75% ±  8.78%

  █   ▂▆                                                      ▁
  █▆▄██▇▇▆▃▁▄▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆ █
  470 μs        Histogram: log(frequency) by time      2.78 ms <

 Memory estimate: 591.58 KiB, allocs estimate: 1630.

Package versions

These results were obtained using the following versions.

using InteractiveUtils
versioninfo()
println()

using Pkg
Pkg.status(["PositiveIntegrators", "SparseArrays", "KLU", "LinearSolve"],
           mode=PKGMODE_MANIFEST)
Julia Version 1.12.2
Commit ca9b6662be4 (2025-11-20 16:25 UTC)
Build Info:
  Official https://julialang.org release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, znver3)
  GC: Built with stock GC
Threads: 1 default, 1 interactive, 1 GC (on 4 virtual cores)
Environment:
  JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager

Status `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl/docs/Manifest.toml`
  [7ed4a6bd] LinearSolve v3.51.0
  [d1b20bf0] PositiveIntegrators v0.2.14-DEV `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl`
  [2f01184e] SparseArrays v1.12.0