Tutorial: Solution of an NPZD model
This tutorial is about the efficient solution of production-destruction systems (PDS) with a small number of differential equations. We will compare the use of standard arrays and static arrays from StaticArrays.jl and assess their efficiency.
Definition of the production-destruction system
The NPZD model we want to solve was described by Burchard, Deleersnijder and Meister in Application of modified Patankar schemes to stiff biogeochemical models for the water column. The model reads
\[\begin{aligned} N' &= 0.01P + 0.01Z + 0.003D - \frac{NP}{0.01 + N},\\ P' &= \frac{NP}{0.01 + N}- 0.01P - 0.5( 1 - e^{-1.21P^2})Z - 0.05P,\\ Z' &= 0.5(1 - e^{-1.21P^2})Z - 0.01Z - 0.02Z,\\ D' &= 0.05P + 0.02Z - 0.003D, \end{aligned}\]
and we consider the initial conditions $N=8$, $P=2$, $Z=1$ and $D=4$. The time domain of interest is $t\in[0,10]$.
The model can be represented as a conservative PDS with production terms
\[\begin{aligned} p_{12} &= 0.01 P, & p_{13} &= 0.01 Z, & p_{14} &= 0.003 D,\\ p_{21} &= \frac{NP}{0.01 + N}, & p_{32} &= 0.5 (1.0 - e^{-1.21 P^2}) Z,& p_{42} &= 0.05 P,\\ p_{43} &= 0.02 Z, \end{aligned}\]
whereby production terms not listed have the value zero. Since the PDS is conservative, we have $d_{i,j}=p_{j,i}$ and the system is fully determined by the production matrix $(p_{ij})_{i,j=1}^4$.
Solution of the production-destruction system
Now we are ready to define a ConservativePDSProblem
and to solve this problem with a method of PositiveIntegrators.jl or OrdinaryDiffEq.jl.
As mentioned above, we will try different approaches to solve this PDS and compare their efficiency. These are
- an out-of-place implementation with standard (dynamic) matrices and vectors,
- an in-place implementation with standard (dynamic) matrices and vectors,
- an out-of-place implementation with static matrices and vectors from StaticArrays.jl.
Standard out-of-place implementation
Here we create a function to compute the production matrix with return type Matrix{Float64}
.
using PositiveIntegrators # load ConservativePDSProblem
function prod(u, p, t)
N, P, Z, D = u
p12 = 0.01 * P
p13 = 0.01 * Z
p14 = 0.003 * D
p21 = N / (0.01 + N) * P
p32 = 0.5 * (1.0 - exp(-1.21 * P^2)) * Z
p42 = 0.05 * P
p43 = 0.02 * Z
return [0.0 p12 p13 p14;
p21 0.0 0.0 0.0;
0.0 p32 0.0 0.0;
0.0 p42 p43 0.0]
end
The solution of the NPZD model can now be computed as follows.
u0 = [8.0, 2.0, 1.0, 4.0] # initial values
tspan = (0.0, 10.0) # time domain
prob_oop = ConservativePDSProblem(prod, u0, tspan) # create the PDS
sol_oop = solve(prob_oop, MPRK43I(1.0, 0.5))
Plotting the solution shows that the components $N$ and $P$ are in danger of becoming negative.
using Plots
plot(sol_oop; label = ["N" "P" "Z" "D"], xguide = "t")
PositiveIntegrators.jl provides the function isnonnegative
(and also isnegative
) to check if the solution is actually nonnegative, as expected from an MPRK scheme.
isnonnegative(sol_oop)
true
Standard in-place implementation
Next we create an in-place function for the production matrix.
function prod!(PMat, u, p, t)
N, P, Z, D = u
p12 = 0.01 * P
p13 = 0.01 * Z
p14 = 0.003 * D
p21 = N / (0.01 + N) * P
p32 = 0.5 * (1.0 - exp(-1.21 * P^2)) * Z
p42 = 0.05 * P
p43 = 0.02 * Z
fill!(PMat, zero(eltype(PMat)))
PMat[1, 2] = p12
PMat[1, 3] = p13
PMat[1, 4] = p14
PMat[2, 1] = p21
PMat[3, 2] = p32
PMat[4, 2] = p42
PMat[4, 3] = p43
return nothing
end
The solution of the in-place implementation of the NPZD model can now be computed as follows.
prob_ip = ConservativePDSProblem(prod!, u0, tspan)
sol_ip = solve(prob_ip, MPRK43I(1.0, 0.5))
plot(sol_ip; label = ["N" "P" "Z" "D"], xguide = "t")
We also check that the in-place and out-of-place solutions are equivalent.
sol_oop.t ≈ sol_ip.t && sol_oop.u ≈ sol_ip.u
true
Using static arrays
For PDS with a small number of differential equations like the NPZD model the use of static arrays will be more efficient. To create a function which computes the production matrix and returns a static matrix, we only need to add the @SMatrix
macro.
using StaticArrays
function prod_static(u, p, t)
N, P, Z, D = u
p12 = 0.01 * P
p13 = 0.01 * Z
p14 = 0.003 * D
p21 = N / (0.01 + N) * P
p32 = 0.5 * (1.0 - exp(-1.21 * P^2)) * Z
p42 = 0.05 * P
p43 = 0.02 * Z
return @SMatrix [0.0 p12 p13 p14;
p21 0.0 0.0 0.0;
0.0 p32 0.0 0.0;
0.0 p42 p43 0.0]
end
In addition we also want to use a static vector to hold the initial conditions.
u0_static = @SVector [8.0, 2.0, 1.0, 4.0] # initial values
prob_static = ConservativePDSProblem(prod_static, u0_static, tspan) # create the PDS
sol_static = solve(prob_static, MPRK43I(1.0, 0.5))
using Plots
plot(sol_static; label = ["N" "P" "Z" "D"], xguide = "t")
This solution is also nonnegative.
isnonnegative(sol_static)
true
The above implementation of the NPZD model using StaticArrays
can also be found in the Example Problems as prob_pds_npzd
.
Performance comparison
Finally, we use BenchmarkTools.jl to show the benefit of using static arrays.
using BenchmarkTools
@benchmark solve(prob_oop, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 2294 samples with 1 evaluation per sample.
Range (min … max): 1.542 ms … 74.997 ms ┊ GC (min … max): 0.00% … 96.73%
Time (median): 1.635 ms ┊ GC (median): 0.00%
Time (mean ± σ): 2.175 ms ± 2.990 ms ┊ GC (mean ± σ): 14.97% ± 12.97%
█▄ ▁▅▁▂
██▆▅████▆▅▁▁▅▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅▅▅▅▃▄▆▅ █
1.54 ms Histogram: log(frequency) by time 11.4 ms <
Memory estimate: 2.89 MiB, allocs estimate: 41328.
using BenchmarkTools
@benchmark solve(prob_ip, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 5668 samples with 1 evaluation per sample.
Range (min … max): 750.080 μs … 69.336 ms ┊ GC (min … max): 0.00% … 98.26%
Time (median): 781.619 μs ┊ GC (median): 0.00%
Time (mean ± σ): 879.653 μs ± 1.385 ms ┊ GC (mean ± σ): 5.51% ± 4.16%
▄█ ▁
▂▆▇███▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▄██▃▃▂▂▂▂▃▃▅▇▄▃▂▃▃▃▃▂▂▂▂▂▂▂▁▁▂▁▂▂▂▂ ▃
750 μs Histogram: frequency by time 1.02 ms <
Memory estimate: 477.21 KiB, allocs estimate: 6570.
@benchmark solve(prob_static, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 272.007 μs … 49.282 ms ┊ GC (min … max): 0.00% … 98.67%
Time (median): 286.465 μs ┊ GC (median): 0.00%
Time (mean ± σ): 339.368 μs ± 778.344 μs ┊ GC (mean ± σ): 7.17% ± 5.17%
█▄
▅██▆▃▄▆▅▄▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▁▂▂▂▂▂▂▂▂▃▄▆▇▇▅▄▅▅▅▃▃▂▂▂▂▂▂▂▂▂ ▃
272 μs Histogram: frequency by time 389 μs <
Memory estimate: 251.09 KiB, allocs estimate: 1743.
Package versions
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
println()
using Pkg
Pkg.status(["PositiveIntegrators", "StaticArrays", "LinearSolve"],
mode=PKGMODE_MANIFEST)
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl/docs/Manifest.toml`
[7ed4a6bd] LinearSolve v3.16.0
[d1b20bf0] PositiveIntegrators v0.2.13-DEV `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl`
[90137ffa] StaticArrays v1.9.13