Tutorial: Solution of a stratospheric reaction problem
This tutorial is about the efficient solution of a stiff non-autonomous and non-conservative production-destruction systems (PDS) with a small number of differential equations. We will compare the use of standard arrays and static arrays from StaticArrays.jl and assess their efficiency.
Definition of the production-destruction system
This stratospheric reaction problem was described by Adrian Sandu in Positive Numerical Integration Methods for Chemical Kinetic Systems, see also the paper Positivity-preserving adaptive Runge–Kutta methods by Stefan Nüßlein, Hendrik Ranocha and David I. Ketcheson. The governing equations are
\[\begin{aligned} \frac{dO^{1D}}{dt} &= r_5 - r_6 - r_7,\\ \frac{dO}{dt} &= 2r_1 - r_2 + r_3 - r_4 + r_6 - r_9 + r_{10} - r_{11},\\ \frac{dO_3}{dt} &= r_2 - r_3 - r_4 - r_5 - r_7 - r_8,\\ \frac{dO_2}{dt} &= -r_1 -r_2 + r_3 + 2r_4+r_5+2r_7+r_8+r_9,\\ \frac{dNO}{dt} &= -r_8+r_9+r_{10}-r_{11},\\ \frac{dNO_2}{dt} &= r_8-r_9-r_{10}+r_{11}, \end{aligned}\]
with reaction rates
\[\begin{aligned} r_1 &=2.643⋅ 10^{-10}σ^3 O_2, & r_2 &=8.018⋅10^{-17}O O_2 , & r_3 &=6.12⋅10^{-4}σ O_3,\\ r_4 &=1.567⋅10^{-15}O_3 O , & r_5 &= 1.07⋅ 10^{-3}σ^2O_3, & r_6 &= 7.11⋅10^{-11}⋅ 8.12⋅10^6 O^{1D},\\ r_7 &= 1.2⋅10^{-10}O^{1D} O_3, & r_8 &= 6.062⋅10^{-15}O_3 NO, & r_9 &= 1.069⋅10^{-11}NO_2 O,\\ r_{10} &= 1.289⋅10^{-2}σ NO_2, & r_{11} &= 10^{-8}NO O, \end{aligned}\]
where
\[\begin{aligned} T &= t/3600 \mod 24,\quad T_r=4.5,\quad T_s = 19.5,\\ σ(T) &= \begin{cases}1, & T_r≤ T≤ T_s,\\0, & \text{otherwise}.\end{cases} \end{aligned}\]
Setting $\mathbf u = (O^{1D}, O, O_3, O_2, NO, NO_2)$ the initial value is $\mathbf{u}_0 = (9.906⋅10^1, 6.624⋅10^8, 5.326⋅10^{11}, 1.697⋅10^{16}, 4⋅10^6, 1.093⋅10^9)^T$. The time domain in seconds is $[4.32⋅10^{4}, 3.024⋅10^5]$, which corresponds to $[12.0, 84.0]$ in hours. There are two independent linear invariants, e.g. $u_1+u_2+3u_3+2u_4+u_5+2u_6=(1,1,3,2,1,2)\cdot\mathbf{u}_0$ and $u_5+u_6 = 1.097⋅10^9$.
The stratospheric reaction problem can be represented as a (non-conservative) PDS with production terms
\[\begin{aligned} p_{13} &= r_5, & p_{21} &= r_6, & p_{22} &= r_1+r_{10},\\ p_{23} &= r_3, & p_{24} &= r_1,& p_{32} &= r_2,\\ p_{41} &= r_7, & p_{42}&= r_4+r_9, & p_{43}&= r_4+r_7+r_8,\\ p_{44} &= r_3+r_5, & p_{56}&=r_9+r_{10}, & p_{65}&=r_8+r_{11}. \end{aligned}\]
and additional destruction terms
\[\begin{aligned} d_{22}&= r_{11}, & d_{44}&=r_2. \end{aligned}\]
In addition, all production and destruction terms not listed have the value zero.
Solution of the production-destruction system
Now we are ready to define a PDSProblem
and to solve this problem with a method of PositiveIntegrators.jl or OrdinaryDiffEq.jl.
As mentioned above, we will try different approaches to solve this PDS and compare their efficiency. These are
- an out-of-place implementation with standard (dynamic) matrices and vectors,
- an in-place implementation with standard (dynamic) matrices and vectors,
- an out-of-place implementation with static matrices and vectors from StaticArrays.jl.
Standard out-of-place implementation
Here we create an out-of-place function to compute the production matrix with return type Matrix{Float64}
and a second out-of-place function for the destruction vector with return type Vector{Float64}
.
using PositiveIntegrators # load PDSProblem
function prod(u, p, t)
O1D, O, O3, O2, NO, NO2 = u
Tr = 4.5
Ts = 19.5
T = mod(t / 3600, 24)
if (Tr <= T) && (T <= Ts)
Tfrac = (2 * T - Tr - Ts) / (Ts - Tr)
sigma = 0.5 + 0.5 * cos(pi * abs(Tfrac) * Tfrac)
else
sigma = 0.0
end
M = 8.120e16
k1 = 2.643e-10 * sigma^3
k2 = 8.018e-17
k3 = 6.120e-4 * sigma
k4 = 1.567e-15
k5 = 1.070e-3 * sigma^2
k6 = 7.110e-11
k7 = 1.200e-10
k8 = 6.062e-15
k9 = 1.069e-11
k10 = 1.289e-2 * sigma
k11 = 1.0e-8
r1 = k1 * O2
r2 = k2 * O * O2
r3 = k3 * O3
r4 = k4 * O3 * O
r5 = k5 * O3
r6 = k6 * M * O1D
r7 = k7 * O1D * O3
r8 = k8 * O3 * NO
r9 = k9 * NO2 * O
r10 = k10 * NO2
r11 = k11 * NO * O
return [0.0 0.0 r5 0.0 0.0 0.0;
r6 r1+r10 r3 r1 0.0 0.0;
0.0 r2 0.0 0.0 0.0 0.0;
r7 r4+r9 r4+r7+r8 r3+r5 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 r9+r10;
0.0 0.0 0.0 0.0 r8+r11 0.0]
end
function dest(u, p, t)
O1D, O, O3, O2, NO, NO2 = u
k2 = 8.018e-17
k11 = 1.0e-8
r2 = k2 * O * O2
r11 = k11 * NO * O
return [0.0, r11, 0.0, r2, 0.0, 0.0]
end
The solution of the stratospheric reaction problem can now be computed as follows.
u0 = [9.906e1, 6.624e8, 5.326e11, 1.697e16, 4e6, 1.093e9] # initial values
tspan = (4.32e4, 3.024e5) # time domain
prob_oop = PDSProblem(prod, dest, u0, tspan) # create the PDS
sol_oop = solve(prob_oop, MPRK43I(1.0, 0.5))
Plotting the solution shows that the components $O¹ᴰ$, $O$ and $NO$ are in danger of becoming negative.
using Plots
plot(sol_oop,
layout=(3,2),
xguide = "t [h]",
xguidefontsize = 8,
xticks = (range(first(tspan), last(tspan), 4), range(12.0, 84.0, 4)),
yguide=["O¹ᴰ" "O" "O₃" "O₂" "NO" "NO₂"],
tickfontsize = 7,
legend = :none,
widen = true
)
PositiveIntegrators.jl provides the function isnonnegative
(and also isnegative
) to check if the solution is actually nonnegative, as expected from an MPRK scheme.
isnonnegative(sol_oop)
true
Standard in-place implementation
Next we create in-place functions for the production matrix and the destruction vector.
function prod!(P, u, p, t)
O1D, O, O3, O2, NO, NO2 = u
Tr = 4.5
Ts = 19.5
T = mod(t / 3600, 24)
if (Tr <= T) && (T <= Ts)
Tfrac = (2 * T - Tr - Ts) / (Ts - Tr)
sigma = 0.5 + 0.5 * cos(pi * abs(Tfrac) * Tfrac)
else
sigma = 0.0
end
M = 8.120e16
k1 = 2.643e-10 * sigma^3
k2 = 8.018e-17
k3 = 6.120e-4 * sigma
k4 = 1.567e-15
k5 = 1.070e-3 * sigma^2
k6 = 7.110e-11
k7 = 1.200e-10
k8 = 6.062e-15
k9 = 1.069e-11
k10 = 1.289e-2 * sigma
k11 = 1.0e-8
r1 = k1 * O2
r2 = k2 * O * O2
r3 = k3 * O3
r4 = k4 * O3 * O
r5 = k5 * O3
r6 = k6 * M * O1D
r7 = k7 * O1D * O3
r8 = k8 * O3 * NO
r9 = k9 * NO2 * O
r10 = k10 * NO2
r11 = k11 * NO * O
fill!(P, zero(eltype(P)))
P[1, 3] = r5
P[2, 1] = r6
P[2, 2] = r1 + r10
P[2, 3] = r3
P[2, 4] = r1
P[3, 2] = r2
P[4, 1] = r7
P[4, 2] = r4 + r9
P[4, 3] = r4 + r7 + r8
P[4, 4] = r3 + r5
P[5, 6] = r9 + r10
P[6, 5] = r8 + r11
return nothing
end
function dest!(D, u, p, t)
O1D, O, O3, O2, NO, NO2 = u
k2 = 8.018e-17
k11 = 1.0e-8
r2 = k2 * O * O2
r11 = k11 * NO * O
fill!(D, zero(eltype(D)))
D[2] = r11
D[4] = r2
return nothing
end
The solution of the in-place implementation of the stratospheric reaction problem can now be computed as follows.
prob_ip = PDSProblem(prod!, dest!, u0, tspan) # create the PDS
sol_ip = solve(prob_ip, MPRK43I(1.0, 0.5))
plot(sol_ip,
layout=(3,2),
xguide = "t [h]",
xguidefontsize = 8,
xticks = (range(first(tspan), last(tspan), 4), range(12.0, 84.0, 4)),
yguide=["O¹ᴰ" "O" "O₃" "O₂" "NO" "NO₂"],
tickfontsize = 7,
legend = :none,
widen = true
)
We also check that the in-place and out-of-place solutions are equivalent.
sol_oop.t ≈ sol_ip.t && sol_oop.u ≈ sol_ip.u
true
Using static arrays
For PDS with a small number of differential equations like the stratospheric reaction model the use of static arrays will be more efficient. To create a function which computes the production matrix and returns a static matrix, we only need to add the @SMatrix
macro. Accordingly, we use the @SVector
macro for the destruction vector.
using StaticArrays
function prod_static(u, p, t)
O1D, O, O3, O2, NO, NO2 = u
Tr = 4.5
Ts = 19.5
T = mod(t / 3600, 24)
if (Tr <= T) && (T <= Ts)
Tfrac = (2 * T - Tr - Ts) / (Ts - Tr)
sigma = 0.5 + 0.5 * cos(pi * abs(Tfrac) * Tfrac)
else
sigma = 0.0
end
M = 8.120e16
k1 = 2.643e-10 * sigma^3
k2 = 8.018e-17
k3 = 6.120e-4 * sigma
k4 = 1.567e-15
k5 = 1.070e-3 * sigma^2
k6 = 7.110e-11
k7 = 1.200e-10
k8 = 6.062e-15
k9 = 1.069e-11
k10 = 1.289e-2 * sigma
k11 = 1.0e-8
r1 = k1 * O2
r2 = k2 * O * O2
r3 = k3 * O3
r4 = k4 * O3 * O
r5 = k5 * O3
r6 = k6 * M * O1D
r7 = k7 * O1D * O3
r8 = k8 * O3 * NO
r9 = k9 * NO2 * O
r10 = k10 * NO2
r11 = k11 * NO * O
return @SMatrix [0.0 0.0 r5 0.0 0.0 0.0;
r6 r1+r10 r3 r1 0.0 0.0;
0.0 r2 0.0 0.0 0.0 0.0;
r7 r4+r9 r4+r7+r8 r3+r5 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 r9+r10;
0.0 0.0 0.0 0.0 r8+r11 0.0]
end
function dest_static(u, p, t)
O1D, O, O3, O2, NO, NO2 = u
k2 = 8.018e-17
k11 = 1.0e-8
r2 = k2 * O * O2
r11 = k11 * NO * O
return @SVector [0.0, r11, 0.0, r2, 0.0, 0.0]
end
In addition we also want to use a static vector to hold the initial conditions.
u0_static = @SVector [9.906e1, 6.624e8, 5.326e11, 1.697e16, 4e6, 1.093e9] # initial values
prob_static = PDSProblem(prod_static, dest_static, u0_static, tspan) # create the PDS
sol_static = solve(prob_static, MPRK43I(1.0, 0.5))
This solution is also nonnegative.
isnonnegative(sol_static)
true
using Plots
plot(sol_static,
layout=(3,2),
xguide = "t [h]",
xguidefontsize = 8,
xticks = (range(first(tspan), last(tspan), 4), range(12.0, 84.0, 4)),
yguide=["O¹ᴰ" "O" "O₃" "O₂" "NO" "NO₂"],
tickfontsize = 7,
legend = :none,
widen = true
)
The above implementation of the stratospheric reaction problem using StaticArrays
can also be found in the Example Problems as prob_pds_stratreac
.
Preservation of linear invariants
As MPRK schemes do not preserve general linear invariants, especially when applied to non-conservative PDS, we compute and plot the relative errors with respect to both linear invariants to see how well these are preserved.
linear_invariant(a, u) = sum(a .* u)
function relerr_lininv(a, u0, sol)
c = linear_invariant(a, u0)
return abs.(c .- (x -> linear_invariant(a, x)).(sol.u))./c
end
a1 = [1; 1; 3; 2; 1; 2] # first linear invariant
a2 = [0; 0; 0; 0; 1; 1] # second linear invariant
p1 = plot(sol_oop.t, relerr_lininv(a1, u0, sol_oop))
p2 = plot(sol_oop.t, relerr_lininv(a2, u0, sol_oop))
plot(p1, p2,
xticks = (range(first(tspan), last(tspan), 4), range(12.0, 84.0, 4)),
legend = :none)
In contrast to MPRK schemes, Runge-Kutta and Rosenbrock methods preserve all linear invariants, but are not guaranteed to generate nonnegative solutions. One way to enforce nonnegative solutions of such schemes is passing isnegative
to the solver option isoutofdomain
. We show this using the Rosenbrock scheme Rosenbrock23
as an example.
using OrdinaryDiffEqRosenbrock
sol_tmp = solve(prob_oop, Rosenbrock23());
isnonnegative(sol_tmp)
false
sol_Ros23 = solve(prob_oop, Rosenbrock23(), isoutofdomain = isnegative);
isnonnegative(sol_Ros23)
true
p3 = plot(sol_Ros23.t, relerr_lininv(a1, u0, sol_Ros23))
p4 = plot(sol_Ros23.t, relerr_lininv(a2, u0, sol_Ros23))
plot(p3, p4,
xticks = (range(first(tspan), last(tspan), 4), range(12.0, 84.0, 4)),
legend = :none)
Performance comparison
Finally, we use BenchmarkTools.jl to compare the different implementations and to show the benefit of using static arrays.
using BenchmarkTools
@benchmark solve(prob_oop, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 8 samples with 1 evaluation per sample.
Range (min … max): 565.209 ms … 737.477 ms ┊ GC (min … max): 0.00% … 18.54%
Time (median): 613.462 ms ┊ GC (median): 12.82%
Time (mean ± σ): 627.199 ms ± 56.829 ms ┊ GC (mean ± σ): 11.33% ± 7.23%
█ █ ██ █ █ █ █
█▁█▁▁▁▁▁▁▁▁▁▁▁▁██▁█▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
565 ms Histogram: frequency by time 737 ms <
Memory estimate: 426.93 MiB, allocs estimate: 9010040.
using BenchmarkTools
@benchmark solve(prob_ip, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 64 samples with 1 evaluation per sample.
Range (min … max): 60.482 ms … 207.634 ms ┊ GC (min … max): 0.00% … 65.43%
Time (median): 74.302 ms ┊ GC (median): 0.00%
Time (mean ± σ): 78.940 ms ± 24.089 ms ┊ GC (mean ± σ): 7.68% ± 13.61%
██▁
▆▁▁▄▃███▆▁▁▃▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▃▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃ ▁
60.5 ms Histogram: frequency by time 185 ms <
Memory estimate: 38.09 MiB, allocs estimate: 345638.
@benchmark solve(prob_static, MPRK43I(1.0, 0.5))
BenchmarkTools.Trial: 138 samples with 1 evaluation per sample.
Range (min … max): 26.868 ms … 135.075 ms ┊ GC (min … max): 0.00% … 74.81%
Time (median): 35.971 ms ┊ GC (median): 0.00%
Time (mean ± σ): 36.233 ms ± 12.682 ms ┊ GC (mean ± σ): 9.18% ± 13.64%
▅ ▂█
█▇▁▁▆██▆▆▁▆▁▄▁▁▁▁▄▁▁▁▁▁▁▁▄▁▄▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄ ▄
26.9 ms Histogram: log(frequency) by time 113 ms <
Memory estimate: 24.75 MiB, allocs estimate: 90970.
Package versions
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
println()
using Pkg
Pkg.status(["PositiveIntegrators", "StaticArrays", "LinearSolve", "OrdnaryDiffEqRosenbrock"],
mode=PKGMODE_MANIFEST)
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl/docs/Manifest.toml`
[7ed4a6bd] LinearSolve v3.16.0
[d1b20bf0] PositiveIntegrators v0.2.13-DEV `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl`
[90137ffa] StaticArrays v1.9.13